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Abstract: Land surface temperature (LST) is a key variable in the determination of land surface
energy exchange processes from local to global scales. Accurate ground measurements of LST are
necessary for a number of applications including validation of satellite LST products or improvement
of both climate and numerical weather prediction models. With the objective of assessing the quality
of in situ measurements of LST and to evaluate the quantitative uncertainties in the ground-based
LST measurements, intensive field experiments were conducted at NOAA’s Air Resources Laboratory
(ARL)’s Atmospheric Turbulence and Diffusion Division (ATDD) in Oak Ridge, Tennessee, USA,
from October 2015 to January 2016. The results of the comparison of LSTs retrieved by three narrow
angle broadband infrared temperature sensors (IRT), hemispherical longwave radiation (LWR)
measurements by pyrgeometers, forward looking infrared camera with direct LSTs by multiple
thermocouples (TC), and near surface air temperature (AT) are presented here. The brightness
temperature (BT) measurements by the IRTs agreed well with a bias of <0.23 ◦C, and root mean
square error (RMSE) of <0.36 ◦C. The daytime LST(TC) and LST(IRT) showed better agreement (bias
= 0.26 ◦C and RMSE = 0.67 ◦C) than with LST(LWR) (bias > 1.1 and RMSE > 1.46 ◦C). In contrast,
the difference between nighttime LSTs by IRTs, TCs, and LWR were <0.47 ◦C, whereas nighttime AT
explained >81% of the variance in LST(IRT) with a bias of 2.64 ◦C and RMSE of 3.6 ◦C. To evaluate
the annual and seasonal differences in LST(IRT), LST(LWR) and AT, the analysis was extended to four
grassland sites in the USA. For the annual dataset of LST, the bias between LST (IRT) and LST (LWR)
was <0.7 ◦C, except at the semiarid grassland (1.5 ◦C), whereas the absolute bias between AT and
LST at the four sites were <2 ◦C. The monthly difference between LST (IRT) and LST (LWR) (or AT)
reached up to 2 ◦C (5 ◦C), whereas half-hourly differences between LSTs and AT were several degrees
in magnitude depending on the site characteristics, time of the day and the season.

Keywords: land surface temperature; infrared temperature sensors; thermal imaging

1. Introduction

Land surface temperature (LST), the thermodynamic temperature of the interface between the
Earth’s surface and its atmosphere, is a key variable in the determination of land surface–atmosphere
processes from local to global scales. LST, also referred to as skin temperature of land surface,
has been identified as one of the most important environmental data records [1] and is widely used in
meteorological, climatological, hydrological, ecological, biophysical, and biochemical research [2–7].
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The magnitude and temporal variation of LST is determined by the conductive, convective, and radiative
energy exchange process at the earth atmosphere interface in response to the solar insolation and
surface characteristics. LST, usually measured by ground-based, airborne, and space-borne remote
sensing instruments, is the aggregated radiometric temperature of all surface components including
soil, vegetation, and other land surface components within the sensor field of view in the direction
of observation [8,9]. The measurement of LST by radiometric sensors, indicative of the thermal state
of the surface, differs from near surface air temperature (AT) routinely measured at weather stations
using a sheltered thermometer 1.5–3.5 m above a flat, grassy, well-ventilated surface or ground-surface
temperature, usually measured by thermistors up to 5 cm beneath the surface cover [10]. As satellites
do not directly measure AT, the satellite infrared-based LST measurements have been widely used for
the indirect estimation of AT [11–14].

Accurate measurements of LST at high spatial and temporal resolutions are needed to improve
the model parameterizations of land-atmosphere exchange processes and for assessing the uncertainty
in both climate and numerical weather prediction models [15–17]. With advances in remote sensing,
satellite-based LST can be estimated globally by the inversion of Planck’s law from the top of the
atmosphere radiances in the thermal infrared (IR) and microwave (MW) atmospheric windows as
the total radiative energy emitted by the surface is a function of temperature. Of these, clear-sky LST
retrieval from IR is widely used due to its stronger dependence of radiation on temperature, better
accuracy, high spatial resolution, and smaller variation of surface emissivity in these wavelengths,
when compared to all-sky MW LSTs with coarse spatial resolution, low temperature retrieval accuracy,
and shortage of long-term MW dataset [18,19]. In the thermal infrared spectral atmospheric window
region (8–14 µm), LST is typically retrieved by the surface emitted radiance received at the sensor for
a given wavelength, after considering the atmospheric attenuation effects, as a function of both the
actual surface temperature and emissivity. The methods and algorithms for the retrieval of satellite
LST, based on radiative transfer models [20,21], are going through considerable evolution, but a
consensus of globally applicable algorithm for long-term datasets from different platforms has not
yet been achieved [7,22]. Even though satellite radiometric measurements of LST are a powerful tool,
there are still large uncertainties associated with the retrieval of remotely sensed LST measurements.
To improve confidence in the methods, algorithms, and parameters used to derive remotely sensed
LST, and to assess accuracy and precision of the retrieved LST, validation of satellite-based LST is
required. One of the most popular and accurate methods for satellite LST validation is referred to as
temperature based (T-based) method which is the direct comparison of satellite LST with ground-based
in situ measurements using thermal infrared radiometers over thermally homogeneous field sites
concurrently with satellite overpass [7,19,23]. Even though satellite-based LST provides spatial
variation, its temporal variation is limited when compared to ground-based measurements of LST.
This demands more accurate ground measurements of LST for longer periods over various land covers
to fill spatial and temporal gaps of current satellite measurements. However, such measurements are
quite scarce.

As the surface skin layer is in contact with both atmosphere and soil/vegetation, it is difficult to
measure LST using traditional thermometers. The in situ LST is not directly measured, but estimated
from surface brightness temperature (BT) derived using the amount of energy radiated by the surface,
target emissivity and sky radiance derived from incoming longwave radiation or sky BT measurements
to account for the upward reflected component of the downward radiation. Currently, there are three
methods to obtain ground-based LST including the use of narrow angle broadband or multiband
infrared radiometers or imagers, estimates from broadband infrared hemispheric fluxes, and using AT
as a proxy for LST [24–27]. Contrary to the near surface AT, accurate ground-based LST measurements
are not usually conducted globally as part of standard meteorological observations on a global basis.
However, a few exceptions in the USA include BT measurements by narrow-angle IR thermometers
(IRT) at the United States Climate Reference Network (USCRN, https://www.ncdc.noaa.gov/crn/) [28]
and LST data obtained from broadband infrared hemispheric fluxes measured by pyrgeometers at
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the Surface Radiation Network (SURFRAD, https://www.esrl.noaa.gov/gmd/grad/surfrad/) [29,30]
mainly over grass surfaces. A similar method can be used to estimate LST over various land cover
types using pyrgeometers at energy flux sites like FLUXNET (https://fluxnet.ornl.gov), where radiation
measurements are usually available. Recent technical advancements led to the production of light
weight forward looking infrared (FLIR) sensors in addition to low cost IR sensors. These FLIR cameras
onboard aircraft or unmanned aerial vehicles (UAVs) can provide LST images over a larger area and
are especially useful in campaign mode experiments compared to point measurements by IR sensors.
The footprints of tower-based measurements are much smaller than those from infrared imagers or
sensors on UAVs, aircraft or satellite-based sensors. However, it remains an evolving technique with
limited resolution, accuracy, poor contrast, and low signal to noise ratios that needs to be fine-tuned to
obtain higher accuracy of IRT’s. Even though all the IR sensors and imagers are factory calibrated,
neither multiple sensors with a different field of view nor their field deployment, have been compared
over a long duration.

One of the most challenging aspects of these intercomparisons in the field is the difficulty to find
naturally homogeneous sites compared to well-controlled laboratory-based comparisons. Recently,
a few attempts have been made to assess the uncertainties in situ LST under laboratory and field
conditions during fiducial reference measurements for validation of surface temperature from Satellites
(FRM4STS) experiment in 2016 [31,32] and field inter-comparison experiment (FICE) in 2017 [33].
However, these experiments utilized only directional narrow angle IR radiometers for a short duration.
In our study, intercomparison of ground-based LST measurements were carried out using the three
methods as mentioned above during intensive field campaign and also over multiple field sites for a
year. In an effort to evaluate and better quantify the uncertainties in ground-based LST measurements,
we conducted an intercomparison of LSTs using in situ sensors over an asphalt surface in a parking
lot in Oak Ridge and extended the analysis on the methods of LST estimation to four grassland sites.
The objectives of the present paper are (1) to compare the LST measurements made over an asphalt
surface using point measurements by an array of thermocouples, three narrow angle IR thermometers,
one set of pyrgeometers with a nearly hemispheric field of view, and a FLIR camera; (2) to assess how
near-surface air temperature measurements made at the site compare with the ground-based LST
measurements; and (3) to evaluate the difference in LST estimates using IRT and longwave radiation
measurements at four grassland sites and compare it with near surface air temperature at those sites.

2. Materials and Methods

2.1. Sites and Measurements

The surface temperature measurements using multiple sensors used in this study were conducted
at NOAA/ARL/ATDD, Oak Ridge, TN, USA (36.003576 N, 85.248738 W, elevation 259 m), during 10
October 2015 to 8 January 2016. The instruments were installed at 1.7 m at the middle of a ~5 m
long horizontal truss mounted east-west over two tripods placed almost diagonally over the study
area in the parking lot. The asphalt pavement (~6 m in diameter) was coated with asphalt emulsion
driveway sealer for this experiment. The precipitation measurements are from a tipping bucket rain
gauge (Model TB-3) from a co-located meteorological test station, within ~90 m from the site on the
ATDD campus.

The surface temperatures used in the study were measured by three infrared radiometers—Apogee
Infrared Temperature (IR) Sensors (SI-111 Infrared Radiometer, Apogee Instruments Inc., Logan, UT,
USA), Heitronics IR radiometer (KT19.85 II, Heitronics, Infrarot Messtechnik GmbH, Wiesbaden,
Germany), Jet Propulsion Laboratory’s Quasi Nulling IR Radiometer (here after JPLR) (500 series),
one infrared imager—Forward Looking Infrared Radiometer (FLIR) Tau 2 camera (FLIR Systems,
Inc., Wilsonville, OR, USA), and 12 thermocouples embedded on the asphalt surface. The main
specifications of the IR radiometers are presented in Table 1. In addition to this, measurements
of air temperature (Thermometrics corp PRT, Northridge, CA, USA), shortwave radiation (paired

https://www.esrl.noaa.gov/gmd/grad/surfrad/
https://fluxnet.ornl.gov


Sensors 2020, 20, 5268 4 of 26

pyranometers, model CNR1-CM3, Kipp and Zonen, Delft, The Netherlands), and longwave radiation
(paired pyrgeometers, CNR1-CG3, Kipp and Zonen, Delft, The Netherlands) were also made. Platinum
resistance thermometer (PRT) was enclosed within a fan aspirated radiation shield to minimize
radiative errors on air temperature. The CG3 is a hemispherical pyrgeometer with a nominal spectral
range of 4.5–42.0 µm, operational temperature range of −40 to 80 ◦C, expected accuracy of ±10% for
daily sums and a field of view (FOV) 150◦ (http://kippzonen.com). The effective radius of the FOV of
pyrgeometers on a 1.7 m tower is ~6.34 m.

Table 1. Specifications of the thermal infrared (IR) radiometers.

Instrument Spectral
Range (µm) Accuracy Instrument

Height (m)
FOV
(◦)

Footprint
Area (m2)

Infrared Thermometer (IRT) (◦C)
Apogee (SI-111) 8–14 ±0.2 3 1.7 44 1.48
Apogee (IRTS-P) 6.5–14 ±0.3 2.0 56 3.55

Heitronics (KT19.85) 9.6–1.5 ±0.2 1.7 3 0.006
JPLR (500 series) 1 8–14 ±0.1 1.7 36 0.96

IR camera
FLIR (Tau2) 7.5–13.0 ±5.0 1.7 45 × 35 1.51

Pyrgeometer (LWR) 2 (Wm−2)
Kipp and Zonen (CNR1-CG3) 4.5–42.0 DT ± 10% 4 1.7 150 126
1 For JPL Quasi nulling radiometer (JPLR), the accuracy is for the calibrated range from 4 to 40 ◦C. 2 The acronym
LWR is used to indicate land surface temperature (LST) estimation by using longwave radiation measurements.
3 Accuracy is ±0.2 ◦C for the temperature range −10 ◦C to +65 ◦C; and ±0.5 ◦C for −40 ◦C to +70 ◦C. 4 DT indicates
daily totals.

Heitronics KT19.85 II model IR Pyrometer (KT19.85 II, Heitronics, Infrarot Messtechnik GmbH,
Wiesbaden, Germany) has a 1.5◦ half angle and measures surface temperatures with an accuracy
of ±0.5 ◦C and has a temperature resolution of 0.03 ◦C. The spectral sensitivity is between 9.6 and
11.5 µm [34]. The footprint of the Heitronics IR Pyrometer varies as a function of the altitude (i.e.,
when the sensor was at 1.7 m above the ground, the footprint of the sensor at the ground was a circle
with a diameter of 0.089 m and area of ~0.0062 m2).

Apogee infrared radiometers (Apogee model SI-111, Apogee Instruments Inc., Logan, UT, USA)
have a 22◦ half angle FOV and detect radiation in the 8–14 µm wavelength range. It has a stated absolute
accuracy of ±0.5 ◦C from −40 to 70 ◦C and ±0.2 ◦C from −10 to 65 ◦C. (www.apogeeinstruments.com/).
At 1.7 m, the footprint of the sensor at the ground was a circle with 1.37 m in diameter.

JPL Quasi Nulling IR Radiometer (500 series) (here after JPLR) is an autonomous, self-calibrating,
field portable radiometer developed at JPL and calibrated to work in the range from 4 to 40 ◦C with
an accuracy of ±0.1 ◦C. It has a half-angle FOV of 18◦ and works in the 8–14 µm range. This sensor
was originally designed to measure surface temperature of water bodies similar to JPL near-nulling
radiometer (http://calval.jpl.nasa.gov/radiometers). The footprint at 1.7 m for the sensor was a circle
with ~1.1 m in diameter [35].

The thermal infrared imager used in this study was a Forward-Looking Infrared Radiometer
(FLIR) Tau 2 model camera (FLIR Systems, Inc., Wilsonville, OR, USA, www.flir.com) with a 336 × 256
pixel image dimension and a 7.5 mm lens. The thermal camera used an Uncooled VOx Microbolometer
to detect longwave radiation between 7.5 and 13.0 µm. The camera operates at ambient temperature of
−40 ◦C to +80 ◦C and measures scene temperature within the range of −40 ◦C to +165 ◦C. The lens
FOV is 45◦ × 35◦, so at 1.7 m it captures images with an area of 1.41 × 1.07 m2. The camera was
controlled by a TeAx Thermal Capture data acquisition system (TeAx, Wilnsdorf, Germany) and can
store data at 7.5 Hz. This imager has accuracy on the order of ±5 ◦C or 5% in high-gain state with
advanced radiometry features and can vary slightly across the full operating temperature range [36]
(www.flir.com).
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To measure the actual LST, 12 thermocouples were embedded on the surface in the footprint of
the IR instruments. The type K (Nickel-Chromium/Nickel-Alumel) thermocouples have an accuracy of
0.75% or (2.2 ◦C) and works in the temperature from−200 ◦C to 1260 ◦C (http://www.thermometricscorp.
com/thertypk.html). We used the LST measurement of eight thermocouples which behaved closely
during the experiment. The cables were also embedded on the ground and covered with asphalt
emulsion coating. All IR sensors were mounted at the center of the horizontal truss and oriented
to look straight down. All the measurements, except FLIR and TC were sampled every 30 s and
averaged to 5 min (using data-logger, model CR23X, Campbell Scientific Inc., Logan, UT, USA).
Thermocouple measurements were sampled at 2 s and averaged to 5 min using another data logger.
FLIR measurements were conducted at random intervals during the daytime of DOY 341 to 344 in
2015. Each time, 100 images were collected and were averaged to get mean surface temperature.

To extend the data analysis and to evaluate the results on the methods of LST measurements,
we have used half-hourly data from four grassland sites (Audubon, Brookings, Canaan Valley, and Fort
Peck) (Table 2) with measurement heights below 3 m to represent traditional near surface AT that has
been used as proxy for LST in many studies. The CNR and IRT were mounted on a ~2 m boom, but
close to each other so that the footprints overlap each other (Figure 1) These sites were established for
NOAA’s Surface Energy Budget Network (SEBN) (https://www.atdd.noaa.gov/sebn/) and are also part
of the Ameriflux network (https://ameriflux.lbl.gov/).

Table 2. Characteristics of the field sites.

Site Latitude, Longitude Elevation (m) Year
Measurement Height (m)

LST AT

Audubon, Arizona 31.5907 N, 110.5090 W 1469 2008 2 1.25
Brookings, South Dakota 44.3452 N, 96.8358 W 497 2008 2 1.5

Canaan Valley, West Virginia 39.0633 N, 79.4208 W 994 2008 2 2.5
Fort Peck, Montana 48.3077 N, 105.1019 W 634 2012 2 1.25

The surface temperatures from these sites were measured using Apogee IRTS-P Infrared
Temperature Sensor (Model IRTS-P; Apogee Instruments Inc., Logan, UT, USA), an older version of
the Apogee IRT sensor used in the study above. The sensor has an accuracy of ±0.3 ◦C from −10
to 55 ◦C. This highly water-resistant sensor used two type-K shielded thermocouple outputs, one
for target and one for sensor body temperature which is used for corrections of target temperature.
The spectral range of the sensor is from 6.5 to 14 µm and has a halfangle FOV of 28◦. The radiation
measurements were performed by a CNR1 net radiometer (Kipp and Zonen) and air temperature using
platinum resistance thermometers (Thermometrics Corp PRT, Northridge, CA, USA). Precipitation
was measured with a weighing rain gauge at all sites (Hydrol. Serv.). One year of data from all
sites are selected for this analysis. In addition to this, the data from co-located SURFRAD (48.31 N,
105.10 W) and USCRN (Wolf Point 29 ENE, 48.30 N, 105.10 W) sites at Fort Peck were also included in
the analysis. The AT and BT (available only from DOY 175 in 2012) measurements at the USCRN site
were performed by using platinum resistance thermometers mentioned above and Apogee Infrared
Temperature (IRT) Sensors (SI-311 Infrared Radiometer, Apogee Instruments Inc., Logan, UT, USA,
spectral range 6.5–14 µm, 28◦ half-angle FOV, with an accuracy of ±0.2 ◦C) at 1.25 m, respectively.
At the SURFRAD site, the upwelling and downwelling thermal infrared irradiances were measured
by two pyrgeometers at 10 m level (Eppley Precision Infrared Radiometer with spectral range 3.5 to
50.0 µm, FOV of 180◦ and an accuracy of 4.2 Wm−2) and air temperature was measured by using a
precision resistance thermistor with an accuracy of ±0.5 ◦C.

http://www.thermometricscorp.com/thertypk.html
http://www.thermometricscorp.com/thertypk.html
https://www.atdd.noaa.gov/sebn/
https://ameriflux.lbl.gov/
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2.2. Data Analysis

2.2.1. Estimation of LST from Brightness Temperatures

The total radiation received by an infrared sensor or camera is a combination of the radiation
emitted by the target surface and the reflected radiation from the surroundings. This radiant energy
can be attenuated, absorbed, and reemitted by the atmosphere between the surface and the sensor
before reaching the sensor. The contributions from the atmosphere are mainly determined by the
transmittance of the atmosphere (τ) and emittance of the atmosphere (1 − τ). Here the value of τ is
influenced by the temperature, the relative humidity, and the distance between the sensor and target
surface [20,37–40]. As the sensors are mounted very close to the surface in this study the atmospheric
contribution is negligible (τ~1). Therefore, radiant energy detected by the sensor (LSensor) can be
expressed as

LSensor = εLTarget + (1− ε)L↓ (1)

where LTarget is the radiant energy emitted by the target surface, ε is the surface emissivity, L↓ is the
incoming atmospheric radiation at the surface, and 1 − ε corresponds to the reflectivity. LSensor = B(Tb),
LTarget = B(Ts) and L↓ = B(Tsky), where Tb is the brightness temperature known as equivalent blackbody
temperature [8], Ts is the surface radiometric temperature or LST (in K), Tsky is the background or sky
brightness temperature, and B is the Planck function integrated over a wavelength band for a given the
spectral emissivity. Ideally, for a blackbody, B(T) can be calculated by integrating the Planck function
over the entire spectral region, resulting in the Stefan–Boltzmann law [41,42], so that LSensor = σT4

b ,
LTarget = σT4

s , and L↓ = σT4
sky [43] where σ is the Stefan–Boltzmann constant (5.67 × 10−8 Wm−2 K−4).

This is a reasonable approximation for the measured directional surface radiances in the 8–14 µm
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wavelength bands for a limited range of temperatures [9]. Based on Equation (1), Ts by IRTs were
obtained as

Ts =

σT4
b − (1− ε)L↓

εσ


1
4

(2)

The upwelling and downwelling broadband hemispherical radiances measured by the
pyrgeometers were used to estimated ground-based Ts as

Ts =

(
L↑ − (1− ε)L↓

εσ

) 1
4

(3)

In this study, to correct the IRT brightness temperatures, Equation (2) was used with L↓
measurements by CNR1 pyrgeometers instead of using sky temperature measurements to estimate
incoming radiation as the method to receive L↓ has negligible effect on the estimation of Ts [44]. In our
study the emissivity settings of all IR sensors and cameras were set as 1 so they provided measurement
of Tb while the thermocouples embedded on the surface measured the actual Ts. The estimated values
of LST using Tb measurements by IRTs, and those by longwave radiation measurements, are referred to
as the Ts (IRT) and Ts (LWR), respectively, in the subsequent sections, while the direct LST measurement
by thermocouples are denoted by Ts (TC).

2.2.2. Surface Emissivity

The broad band emissivity of any surface depends on the material type, surface characteristics,
composition, roughness, soil moisture, angle, and direction of emission, wavelength, or spectral of
infrared [45,46]. The direct method to estimate surface emissivity in the laboratory experiment involves
the comparison of the radiant temperature between the measured samples and blackbody. However,
direct measurement of surface emissivity in the field is practically difficult due to cost and instrumental
system [31,46–50]. For known values of the Ts (here by thermocouple) and Tb (by IRT), the surface
emissivity can be estimated using Equation (2) as

ε =

σT4
b − L↓

σT4
s − L↓

 (4)

In this study, a simple method was to estimate ε, as the slope of the regression through origin
with σT4

b − L↓ against σT4
s − L↓ for all data for the study period. It was found to be 0.902 ± 0.0002

(S.E), the emissivity of the surface. To evaluate this result, we carried out a regression analysis with
measured LST using thermocouple with those estimated by using Equation (2) with emissivity from
0.65 to 1, in steps of 0.001. The absolute bias and RMSE in LSTs are estimated for every value of
ε. The absolute bias between direct measurement by thermocouple and estimated LST was lowest
(0.0062 ◦C) for a value 0.90 agreeing with our estimation of ε of the target surface. This value falls in
the lower end of the range of values (0.9–0.98) reported for surface containing asphalt. So, we used ε
as 0.90 for correcting the measured temperature by the IR sensors and camera using Equation (2) for
the experiment conducted over the parking lot. However, for the field sites we have used the reported
value of MODIS-based ε for the pixel containing the tower locations due to lack of in situ surface
emissivity measurements at the sites. They are 0.975, 0.987, 0.987, and 0.987 for Audubon, Brookings,
Canaan Valley, and Fort Peck grasslands, respectively [51].

In this study, daytime clear-sky condition refers to periods with solar radiation >10 Wm−2 and
clearness index (CI) >0.70. Here the CI is the ratio of global radiation measured at the campaign site to
the theoretical global radiation received on a horizontal surface placed at the top of the atmosphere
(TOA) and it was calculated at every time step using the solar constant, day number, the latitude
of the location, the solar declination angle, and the hour angle as described in [52]. To compare the
surface temperature measurements made by the sensors, linear regression analysis is performed and
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the coefficient of determination (r) was estimated. The mean bias, standard deviation of the difference
(STDd) and root mean square error (RMSE) were estimated using ∆T = y − x, where y and x are the
independent and dependent variables, respectively. The mean bias, STDd, and RMSE are used as the
measure of accuracy, precision, and uncertainty, respectively [53]. In addition to this, linear regression
analysis was performed and correlation coefficients were estimated.

3. Results

3.1. Comparison of Surface Temperature Measurement Using IRTs, FLIR Camera, and Thermocouples

To examine how the surface temperature measurement by multiple IRTs compare with the direct
measurement of Ts by thermocouple, the time series of the brightness temperature (Tb) measurements
made at the parking lot during a selected period DOY 339–347 containing a period with FLIR
measurements are shown in Figure 2. Here, Tb measurements by IRTs and FLIR, rather than LST were
used to minimize any biases associated with the choice of surface emissivity and the correction for
reflectivity effects on Tb. The time series of surface temperature measurements by all sensors captured
the diurnal variations very well. The magnitude and changes in Tb by IRTs showed strong agreement,
with exceptions mainly during the nighttime. The temporal variation of Tb and Ts measurements
indicate that Tb was always lower than Ts and the difference can be >3 ◦C at midday during clear air
conditions. This shows the effect of emissivity correction (Section 2.2) on the magnitude of surface
temperature measurements by IRTs at unit emissivity. The difference in ε alone can result in higher
magnitudes of Ts than Tb even for similar L↓ in Equation (2) [44]. However, Tb measurements by FLIR
were higher than those by IRTs especially during clear sky conditions on DOY 342. The relationship
between Tb measurements by IRTs reveal a highly significant linear relationship with r2~1 (Figure 3).
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Figure 2. Comparison of 5-min surface brightness temperature (Tb) measurement during DOY 339
to 347 in 2015 using Apogee, Heitronics, and JPLR. For JPLR, the temperature measurements within
calibation range from 4 to 40 ◦C only are shown. The mean LST (Ts) measured by thermocouples (TC)
are shown by gray lines. The average and standard deviation of the forward looking infrared (FLIR) Tb

measurements are shown by black squares and vertical bars, respectively.

For the entire dataset, the mean bias between Tb by JPLR and Apogee were smaller than those
between Heitronics and Apogee sensors or JPLR and Heitronics (Table 3). These biases are within
the accuracy of the sensors (see Section 2). The linear regression relationship showed better results
between JPLR and Apogee BTs when compared to the relationship with Heitronics and JPLR BTs.
This is largely attributed to the similar footprint of both sensors (>1 m in diameter) compared to the
relatively small footprint of Heitronics (0.089 m diameter). These areas partially overlap with the
footprint of the FLIR camera, a rectangle with an area of 1.41 × 1.07 m2.
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Figure 3. Comparison of 5-minute surface brightness temperature measurements (Tb) by IRT
sensors—(a) JPLR vs. Apogee, (b) JPLR vs. Heitronics, and (c) Heitronics vs. Apogee during
the campaign period. Mean bias, STDd, RMSE, and results of the linear regression analysis (solid line)
for the whole dataset are shown. The dotted line indicates 1:1 relationship between the variables.

Table 3. Comparison of surface temperature measurements (Tb or Ts) by in situ sensors during 10
October 2015 to 8 January 2016. Bias, standard deviation of the difference (STDd), root mean square
error (RMSE) in ◦C, and results of the linear regression analysis (y = bx + c) 1 are presented.

Data y x (b, c) r2 RMSE Bias STDd n

All Tb (Heitronics) Tb (Apogee) 1.01, −0.37 1 0.36 −0.26 0.25 24,914
Daytime 0.99, −0.2 1 0.34 −0.22 0.25 11,447

Nighttime 1.02, −0.52 1 0.38 −0.29 0.24 13,468
All Tb (JPLR) Tb (Heitronics) 0.99, 0.37 1 0.35 0.23 0.27 21,860

Daytime 1, 0.11 1 0.29 0.15 0.25 10,801
Nighttime 0.98, 0.6 1 0.41 0.30 0.27 11,059

All Tb (JPLR) Tb (Apogee) 0.99, 0.8 1 0.16 −0.003 0.16 21,860
Daytime 0.99, −0.03 1 0.21 −0.06 0.19 10,801

Nighttime 0.99, 0.08 1 0.09 0.05 0.08 11,059
All Tb (Heitronics) Ts (TC) 0.97, −1.5 0.98 2.25 −1.95 1.14 24,914

Daytime 0.93, −0.65 0.98 2.53 −2.14 1.34 11,447
Nighttime 01.07, 2.6 0.98 1.99 −1.78 0.89 13,468

All Tb (JPLR) Ts (TC) 0.93, −0.47 0.98 1.92 −1.63 0.97 21,860
Daytime 0.91, −0.12 0.98 2.28 −1.94 1.21 10,801

Nighttime 1.04, −1.9 0.98 1.48 −1.32 0.65 11,059
All Tb (Apogee) Ts (TC) 0.96, −1.1 0.99 1.94 −1.68 0.97 24,914

Daytime 0.93, −0.49 0.99 2.25 −1.91 1.19 11,447
Nighttime 1.05, −2 0.99 1.63 −1.48 0.67 13,468

All Mean Tb (IRTs) Tb (FLIR) 1.03, −3.9 0.99 3.41 −3.37 0.49 25
1 Here y is the independent variable, and x is the dependent variable, b and c are the slope, and intercept of the
linear equation. Bias, STDd, and RMSE are estimated using ∆T = y − x. The coefficient of correlation (r2) and the
numbers of observations (n) are also included.

To demonstrate the spatial variation in surface temperature over the target area containing the
embedded TC’s on the surface, Tb within the footprint area of FLIR is shown in Figure 4a,e. The average
Tb on 9 December at 16.50 LST and 8 December 2015 at 12.15 LST were 26.48 (mean) ± 0.58 (S.D) and
16.43 ± 0.21 ◦C, respectively. The homogeneity of FLIR footprint was affected by the presence of TC
cables, even though the cables were coated with the same material and were embedded in the surface
as shown in Figure 4. To evaluate the effect of the TC cables on Tb, an average of Tb values within
100 × 100 pixels for an area devoid of cables, between the TC cable locations was carried out and they
were 26.48 ± 0.33 and 16.40 ± 0.05 ◦C, respectively, suggesting a reduction in variability of Tb over that
area. Overall, the magnitudes of BTs by FLIR were higher than those by IRTs as shown in Figure 2 and
Table 3. The linear regression analysis between Tb by IRTs and FLIR indicated a close agreement with a
slope of 1.03 and an intercept of >−3.9 ◦C. To correct this systematic bias, the offset of 3.9 obtained from
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the average of the three IRTs were reduced from Tb for each pixel and the effect of this correction on the
spatial variability of BTs are shown in Figure 4b,e. These corrected values of BTs were used to estimate
LST (Figure 4c,f using Equation (2)). After this correction, the relationship between mean BTs by IRTs
and FLIR measurements were (y = 1.03x + 0.08, r2 = 0.99, Bias = 0.522, STDd = 0.5, RMSE = 0.71 ◦C)
similar to the IRTs. This demonstrates the use of IRTs to assess any systematic bias of FLIR based
Tb measurements. Even though the FOV of FLIR appeared homogeneous, the difference between
maximum and minimum values of LSTs within the footprint, after excluding the pixels containing the
embedded TC cables, varied from 0.5 to 4 ◦C, while standard deviation from the mean varied from
0.02 to 0.75 ◦C with highest values during noon time clear-sky conditions.
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Figure 4. Spatial variability of brightness temperature (Tb) (a,d), corrected Tb (b,e) and LST (Ts) (c,f)
in the FLIR camera footprint area with embedded thermocouples on 9 December, 16.50 hours and 8
December, 12.05 h, 2015.

3.2. Comparison of LST Measurements Using All In Situ Sensors

To evaluate how the LSTs measured by IRT’s, TC, and FLIR compare with those estimated from
longwave radiation (LWR) measurements by CNR, the time series of LSTs are shown in Figure 5a
and corresponding linear regression analysis is shown in Figure 5b–d. Here the mean values of the
LST by the three IRTs were used. As mentioned above the surface temperature measured by IRT
sensors and imagers are brightness temperatures rather than actual Ts. So, it must be corrected for
surface emissivity and reflectivity effects to get the true estimates of Ts. During the experiment we
noticed the effect of dew deposition on incoming longwave radiation measurements which appeared
as a spike [54], especially during early morning hours for a few days and these data points were
removed leading to gaps in LSTs estimated using Equations (2) and (3). After the emissivity and
reflectivity correction, the LSTs by IRTs, FLIR, and LWR agreed very well in magnitude with the direct
measurements of Ts by TC with r2 > 0.99 (Figure 5 and Table 4). The difference between Ts (LWR)
and other LST measurements were noticeable mainly during daytime. The mean bias (0.23 ◦C), STDd
(0.50 ◦C), and RMSE (0.55 ◦C) from the comparison of Ts (TC) with mean Ts by IRTs was smaller
than the bias and RMSE obtained using Ts (IRT) or Ts (TC) with Ts (LWR) (bias = 0.68, STDd = 0.87
RMSE = 1.11 ◦C; and bias = 0.92, STDd = 0.87 and RMSE = 1.27 ◦C), respectively. This clearly indicates
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that the higher biases between LST measurements were contributed by Ts (LWR). The bias, STDd,
and RMSE between the LST measurements by the three methods were higher during daytime than
those during nighttime (Table 4) because the Earth’s surface is more thermally homogeneous during
nighttime [55]. Due to this, the absolute bias between nighttime Ts measurements by the three methods
above resulted in a value <0.5 ◦C, anticipated accuracy for ground-based LST measurements.Sensors 2020, 20, x FOR PEER REVIEW 11 of 26 
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Figure 5. (a) Time series of 5-min LST (Ts) by thermocouples (TC), IRTs, longwave radiation
measurements (LWR), FLIR camera, and air temperature during DOY 325–347. The linear regression
(solid line) between LST measurements, (b) Ts (TC) vs. Ts (IRT), (c) Ts (IRT) vs. Ts (LWR), and (d) Ts

(TC) vs. Ts (LWR) for the whole dataset are shown.

Table 4. Comparison of land surface temperature (Ts) by different sensors. Bias, STDd, RMSE in ◦C,
and results of the linear regression analysis (y = bx + c) 1 are presented.

Data y x (b, c) r2 RMSE Bias STDd n

All Ts(TC) Ts(IRT) 0.99, 0.28 1 0.55 0.23 0.50 21,004
Daytime 0.98, 0.59 1 0.67 0.26 0.62 10,509

Nighttime 1.02, −0.05 1 0.40 0.40 0.20 10,495
Day clear sky 0.97, 0.86 1 0.81 0.23 0.78 3532

All Ts(TC) Ts(LWR) 1.08, 0.−39 1 1.27 0.92 0.88 21,004
Daytime 1.07, −0.15 0.99 1.65 1.36 0.94 10,509

Nighttime 1.05, −0.12 0.99 0.70 0.47 0.52 10,495
Day clear sky 1.08, 0.11 0.99 2.21 1.91 1.10 3532

All Ts(IRT) Ts(LWR) 1.08, −0.64 0.99 1.11 0.68 0.87 21,004
Daytime 1.09, −0.72 0.99 1.46 1.09 0.96 10,509

Nighttime 1.02, −0.034 0.99 0.56 0.27 0.49 10,495
Day clear sky 1.1, −0.75 1 2.05 1.68 1.16 3532

1 Same as in Table 3.

The mean LSTs by IRTs and the corrected daytime LSTs by FLIR also agreed well (y = 0.98x + 0.37,
r2 = 0.99, bias = 0.0.03, STDd = 0.65, RMSE = 0.64 ◦C) However, during daytime clear sky conditions
the Ts (IRT) and Ts (TC) was higher than Ts (LWR) by 1.7 and 1.9 ◦C, respectively. Similar to BTs, the in
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situ LSTs by IRTs agreed well with each other. The mean bias between Ts by JPLR and Apogee were
(bias = 0.0001 with STDd = 0.16 and RMSE = 0.16 ◦C) smaller than those between Heitronics and
Apogee sensors (bias = −0.28 with STDd = 0.27, RMSE = 0.39 ◦C) or JPLR and Heitronics (bias = 0.26
with STDd = 0.29, RMSE = 0.40 ◦C). As the footprint of the downward looking pyrgeometer is a
larger area than the surface prepared for this experiment, it is most likely that the homogeneity of the
footprint was affected by part of the tripod base and the regular asphalt pavement in the parking lot,
outside the freshly prepared area. The differential heating due to the emissivity difference might have
contributed to higher bias of daytime Ts (LWR).

3.3. Comparison of Land Surface Temperature and Near Surface Air Temperature

The time series of near surface air temperature (Ta) during DOY 325–347 and the difference
between mean LST by IRTs and AT for the study period are shown in Figures 5 and 6, respectively,
to examine how the LSTs by multiple sensors compare with AT. During the entire period, LST was
consistently higher than Ta with a few exceptions during cloudy or rainy periods. The temporal
variation of mean LST and AT, indicate that AT was lower than LST by 30 ◦C during precipitation free
clear days than those during night time or rainy days.
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Figure 6. (a) Times series of the difference between mean LSTs by IRTs (Ts) and mean air temperature
(AT) by platinum resistance thermometers (PRTs) and daily total precipitation (P) during the campaign
period, comparison of 5-min mean LST measurement by (b) thermocouples and (c) IRTs vs. air
temperature (Ta). Histogram of the difference between LST (IRT) and AT for different periods are also
shown (d).

During the observation period, mean LST by IRTs varied from −2.9 to 48.9 ◦C, and Ta varied from
−6.3 to 24.7 ◦C. The difference between Ts (IRT) and Ta varied from −7.3 to 29 ◦C. To better evaluate the
magnitudes of AT and LST, a regression analysis was performed (Figure 6b,c and Table 5). Ta explained
63% (51%) of the variance in Ts (TC) (Ts (IRT)) and had a bias of 5.32 (5.16), STDd of 5.35 (5.93) and
RMSE of 7.55 ◦C (7.86 ◦C). The LST showed a drastic increase when Ta reached 20 ◦C or above and
resulted in a non-linear relationship above that limit whereas the relationship between Ts and Ta was
linear and statistically better during nighttime conditions. The distribution of the differences between
Ts and Ta are shown in Figure 6d, indicating that during daytime clear sky conditions Ts was well
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above Ta by 10 to 30 ◦C. The difference between Ts (TC) and Ta during nighttime was 3.22 ◦C with r2 >

above 0.87.

Table 5. Comparison of land surface temperature (Ts) by IRTs and TCs with air temperature by PRTs.
Bias, STDd, RMSE in ◦C, and results of the linear regression analysis (y = bx + c) 1 are given.

Data y x (b, c) r2 RMSE Bias STDd n

All Ts (IRT) Ta (PRT) 1.02, 4.9 0.51 7.86 5.16 5.93 21,004
Daytime 0.97, 8.1 0.35 10.51 7.69 7.16 10,509

Nighttime 0.79, 4.7 0.81 3.63 2.64 2.50 10,495
Day clear sky 1.14, 11 0.33 15.35 12.48 8.95 3532

All 1.06, 4.7 0.63 7.55 5.32 5.35 24,903
Daytime Ts (TC) Ta (PRT) 1.03, 7.4 0.46 10.29 7.79 6.72 11,447

Nighttime 0.86, 4.5 0.87 3.92 3.22 2.24 13,456
Day clear sky 1.23, 9.5 0.44 15.00 12.33 8.54 3762

1 Same as in Table 3.

3.4. Comparison of LST Measurements over Four Grassland Sites

As both the direct measurement of LST by thermocouple and directional measurements by IRT
showed noticeable difference from LST by hemispherical longwave radiation measurements over the
parking lot, especially during daytime, we extended the comparison of Ts (LWR), Ts (IRT), and Ta

measurements to four grassland sites (Figure 7).
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Day clear sky   1.14, 11 0.33 15.35 12.48 8.95 3532 
All   1.06, 4.7 0.63 7.55 5.32 5.35 24,903 

Daytime Ts (TC) Ta (PRT) 1.03, 7.4 0.46 10.29 7.79 6.72 11,447 
Nighttime   0.86, 4.5 0.87 3.92 3.22 2.24 13,456 

Day clear sky   1.23, 9.5 0.44 15.00 12.33 8.54 3762 
1 Same as in Table 3. 

3.4. Comparison of LST Measurements over Four Grassland Sites 

As both the direct measurement of LST by thermocouple and directional measurements by IRT 
showed noticeable difference from LST by hemispherical longwave radiation measurements over the 
parking lot, especially during daytime, we extended the comparison of Ts (LWR), Ts (IRT), and Ta 
measurements to four grassland sites (Figure 7).  

 
Figure 7. Time series of 30-min air temperature (Ta), precipitation (P), and land surface temperature 
(Ts) by IRT and LWR measurements at the SEBN sites. LST measurements from the nearby United 
States (a–d) Climate Reference Network (USCRN) and (Surface Radiation Network) SURFRAD sites 
are included on panel 4 for the Fort Peck site. 

Figure 7. Time series of 30-min air temperature (Ta), precipitation (P), and land surface temperature
(Ts) by IRT and LWR measurements at the SEBN sites. LST measurements from the nearby United
States (a–d) Climate Reference Network (USCRN) and (Surface Radiation Network) SURFRAD sites
are included on panel 4 for the Fort Peck site.
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As the incoming longwave measurement at the Fort Peck SEBN site had issues during the first
half of the year, similar measurements from the collocated SURFRAD site were used to estimate LST
at Fort Peck site. The comparison of upwelling longwave radiation measurements at both SEBN
and SURFRAD sites showed very good agreement; LWRup (SEBN) = 1.04(LWRup (SURFRAD))-14,
r2 = 1.99, n = 17116, with a bias of 2.05, RMSE = 7.78, and STDd = 7.5 Wm−2. The bias and RMSE was
higher during daytime periods (3.6, 10.44 Wm−2, respectively) than those during nighttime periods
(0.50 and 3.66 Wm−2, respectively). The annual cycles of surface temperature at the four sites indicate
weather with cool winters and warm summers with the exception mainly due to the precipitation
distribution at each site (Figure 7). The highest LST was recorded at the Audubon site (59 ◦C) followed
by Fort Peck (49 ◦C). The time series of Ts (IRT) and Ts (LWR) showed close agreement at the four
sites and the results of linear regression analysis for the entire dataset are shown in Figure 8 and
Table 6. The absolute difference between Ts (IRT) and Ts (LWR) for the annual data was <0.7 ◦C,
except at the Audubon site (1.49 ◦C) and the correlations coefficient was above 0.99. At the Fort Peck
site, the relationship between Ts (LWR) at SEBN and SURFRAD sites was better than the relationship
between Ts (IRT) at SEBN and Ts (LWR) at SURFRAD. During DOY 175–366, Ts (IRT) at USCRN site
was higher than Ts (LWR) at SURFRAD, Ts (IRT) or Ts (LWR) at SEBN site. The slope of the regression,
bias, STDd, and RMSE performed better, with a few exceptions, during nighttime conditions at all
sites, due to better thermal homogeneity (Table 6).
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Figure 8. Comparison half-hourly LST measured by IRTs (Ts (IRT)) with LST estimated by using
longwave radiation measurements (Ts (LWR)) at (a) Audubon, (b) Brookings, (c) Canaan Valley,
and (d) Fort Peck grasslands sites. The linear regression (solid line) for the whole dataset and the results
are shown. The dotted line indicates 1:1 relationship between the variables (See Table 6).
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Table 6. Comparison of Ts (IRT) with Ts (LWR) and Ta for the four grassland sites. Bias, STDd, RMSE
in ◦C, and results of the linear regression analysis (y = bx + c) 1 between measurements are given.

Site Name y x Data (b, c) r2 RMSE Bias STDd n

Audubon

Ts (IRT) Ts (LWR) Day 1, 1.4 1 1.53 1.53 0.07 9114
Night 1.01, 1.4 1 1.45 1.45 0.07 8454

Ts Ta Day 1.28, −0.54 0.8 7.48 4.98 5.57 9114
Night 1.01, −1.4 0.96 1.98 −1.38 1.42 8454

Brookings

Ts (IRT) Ts (LWR) Day 1.04, 1 1 2.2 1.32 1.76 10,928
Night 0.99, −0.39 1 0.8 −0.38 0.7 6544

Ts Ta Day 1.03, 0.66 0.98 2.35 0.86 2.18 10,928
Night 0.98, 1.4 0.99 2.04 −1.44 1.44 6544

Canaan Valley

Ts (IRT) Ts (LWR) Day 0.97, 0.04 0.99 1.27 −0.25 1.23 9156
Night 0.96, 0.27 0.98 1.19 0.16 1.17 7588

Ts Ta Day 1.09, 0.73 0.93 3.33 1.57 2.94 9145
Night 0.97, −1.6 0.97 2.26 −1.72 1.47 7591

Fort Peck

Ts (IRT) Ts (LWR) Day 1.01, 0.18 1 0.89 0.36 0.81 9147
Night 0.98, 0.19 1 0.66 0.18 0.63 7291

Ts Ta Day 1.15, 2.1 0.94 5.75 3.69 4.41 9147
Night 0.99, −0.37 0.99 1.28 −0.37 1.22 7261

Ts (LWR) Ts (LWR) All 1.03, 0.02 0.99 1.69 0.24 1.68 16,408
(SEBN) (SURFRAD)
Ts (IRT) Ts (LWR) All 1.03, 0.25 0.99 1.97 0.52 1.91 16,408
(SEBN) (SURFRAD)
Ts (IRT) Ts (LWR) All 1.06, 0.46 0.99 2.33 1.05 2.08 9182

(USCRN) (SURFRAD)
Ts (IRT) Ts (IRT) All 0.97, −0.13 0.99 1.44 −0.45 1.37 8523
(SEBN) (USCRN)

Ts (LWR) Ts (IRT) All 0.96, −32 0.99 1.67 −0.77 1.48 8523
(SEBN) (USCRN)

1 Same as in Table 3.

To explore further on how the relationship between LST measurements vary seasonally, the results
of monthly statistics are shown in Figure 9a,c. The magnitudes of Ts (IRT) were higher than Ts (LWR)
for all sites except Canaan Valley. The monthly bias showed a transition during the beginning and end
of the growing season in spring (April–May) and November, respectively, at this site. The bias and
RMSE obtained from the comparison of Ts (IRT) and Ts (LWR), indicated strong seasonal variation at
Brookings and Fort Peck. In these sites, bias was higher during the peak growing season from June
to August when the vegetation growth reached its highest of the season [56,57]. The bias and RMSE
at the Brookings were 1.6 and 2.7 ◦C in August, whereas at Fort Peck it was >0.55 ◦C and ~1 ◦C in
June and July, respectively. However, at Canaan Valley, the absolute difference between Ts (IRT) and
Ts (LWR) was lower than 0.58 ◦C throughout the year with lower values of RMSE during May to
September. At Audubon semiarid grassland, the bias and RMSE were consistently high throughout
the year (both > 1.4 ◦C), with slightly higher values (>1.52 ◦C) during May–September. However,
monthly values of STDd (not shown here) from the comparison of Ts (IRT) and Ts (LWR) were lower
than <0.09 ◦C during the year at the Audubon site, whereas it varied from 0.5 to 2.3 ◦C for the other
sites. However, the distribution of the difference between half-hourly daytime Ts (IRT) and Ts (LWR) in
Figure 9 indicates a large difference, exceeding 5 ◦C during daytime in Brookings followed by Canaan
Valley whereas in the other three sites it was mostly less than 2 ◦C.
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Figure 9. Monthly values of bias and root mean square error (RMSE) for Ts (IRT) vs. Ts (LWR) (a,c);
and Ts (IRT) Ta (b,d), respectively for the four grassland sites.

Among the four sites, the magnitudes of daytime half hourly Ts-Ta at the Audubon site reached
up to 25 ◦C followed by Fort Peck and Canaan Valley (<20 ◦C) (Figures 7 and 10), whereas during
nighttime Ts was mostly lower than Ta by <5 ◦C. The difference between Ts and Ta for annual dataset
was highest at Fort Peck (1.9 ◦C) and Audubon (1.9 ◦C) with RMSE 4.38 and 5.56 ◦C, respectively
(Figure 11 and Table 6). At Canaan Valley and Brookings, the bias was 0.08 and 0.14 ◦C, respectively.
The RMSE between Ts and Ta were among the highest at Audubon and Fort Peck during daytime
conditions, but it was the highest at Brookings and Canaan Valley during nighttime periods. However,
on a monthly basis, all sites showed distinct patterns (Figure 9b,d), but mostly with larger Ts-Ta values
during peak summer months. At the Audubon site Ts-Ta and RMSE reached its peak values in June
(4.7 and 9 ◦C, respectively), and these values reduced drastically by July following the onset of North
American monsoon season (Figure 7a) and increase in vegetative activity [58]. The bias and RMSE
between Ts and Ta at Fort Peck were consistently above 2.9 and 5.0 ◦C, respectively, during May to
September. Whereas at Brookings, both Ts and Ta agreed well during most of the year (Figure 7b),
especially during June to September compared with other sites with monthly absolute bias < 0.5 and
RMSE < 2.7 ◦C, but higher values during spring and fall months. The bias was <1 ◦C at Canaan valley
but RMSE reached values close to 4 ◦C during June to July. As expected, Ta was mostly higher than Ts

during winter months.
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Figure 11. Comparison of LST measured by IRTs (Ts) with AT measurements (Ta) at (a) Audubon,
(b) Brookings, (c) Canaan Valley, and (d) Fort Peck grasslands sites. The results of the linear regression
(solid line) for the whole dataset are shown (see Table 6).
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4. Discussion and Conclusions

Our results show that the ground-based surface BTs by the three IRTs over the entire period
agreed quite well within <0.3 ◦C with STDd < 0.27 ◦C and RMSE < 0.36 ◦C confirming that these
instruments are suitable for short and long-term studies on land surface interaction as well as for
providing high quality validation data for satellite and other applications [19]. As LSTs are indirect
measurements, accuracy of LST can be influenced by the accuracy of ε and downwelling irradiance.
However, its effect on the intercomparison experiment here is minimal due to the same values of ε and
L↓ used for the estimation of LSTs by all sensors. After the correction, the estimated LSTs by IRTs were
in very good agreement with LSTs by TCs with an absolute difference of 0.23 ◦C with STDd of 0.50
and RMSE of 0.55 ◦C. The in situ LSTs by the IRTs also agree well with each other with an absolute
bias of <0.3 and RMSE < 0.4 ◦C. These values are slightly lower than the average absolute deviation
of 0.44 ◦C from the mean and an average standard deviation of 0.18 ◦C between the in situ LSTs by
five IR radiometers on the gravel plains near Gobabeb Training and Research Centre in Namibia [33].
The direct measurement of LST by TCs, at actual surface emissivity of 0.9 were higher than the BTs by
IRTs for ε = 1 by ~2 ◦C over the parking lot surface, demonstrate the impact of radiance and emissivity
correction (Section 2) on the magnitude of LST. Because of the higher values of ε close to 1, this effect
was small at the grassland sites. At the grassland sites, the absolute difference between LST and BT for
the annual data were <0.15 ◦C for sites with ε of 0.987, whereas it was ~0.57 ◦C for Audubon grassland
(ε = 0.975). These results agree with our previous study over a grassland USCRN site showed that
LST is less sensitive to L↓ than ε and for a range values of ε between 0.9 and 1, an increase in ε by 1%
(within the range 0.95–1) resulted in an average decrease of LST by 0.17 ± 0.04 ◦C for similar values of
L↓ [44]. Based on measurements over a rice field, [59] reported that an uncertainty of 0.2–0.4 ◦C can be
expected for an uncertainty of 0.01 in emissivity.

Among the three types of in situ sensors, including TCs, IRTs, and pyrgeometer, there was better
agreement between the LSTs by three different IRTs (<0.3 ◦C) than between the LSTs by pyrgeometers
and any IRT (>0.67 ◦C). The comparison of LST (TC) with LST (IRT) also yielded better results than the
comparison of LST (IRT) and LST (LWR) during the entire study period including daytime clear-sky
conditions. The difference between LST (IRT) and LST (LWR) was ~2 ◦C during clear-sky conditions
over the parking lot. Over the grassland sites, the monthly difference between LST (IRT) and LST
(LWR) reached up to 2 ◦C, depending up on the heterogeneity of the site and the season [60,61]. As TCs
provides point measurements of LST, and multiple TCs can provide an average value of LST of the
target. Here, we have used TC as a direct method to measure LST by embedding it to the asphalt surface.
However, continuous measurements using TCs in field studies is very challenging, as it can detach after
installation and also malfunction (Section 2). Additional uncertainties in temperature measurements
using TCs can result from other factors like cable drift, spurious junction voltages, inadequate voltmeter
sensitivity, and reference temperature uncertainty [62]. Although, contact sensors like TCs can provide
leaf or tree temperature during short-term intensive experiment [63,64], LST measurements over
vegetative canopies are not reliable as the point measurement by TC is less representative of the field
site compared with non-contact thermal infrared sensors over an area. Over dense vegetation like
forest areas, the tower, airborne, or satellite-based LST measurement by IR sensors usually provide the
top canopy temperature rather than soil surface or understory temperature.

By definition, LST is a thermodynamic temperature that can be felt or measured by an accurate
thermometer at the land surface-atmosphere point-of-contact and is independent of wavelength [9,53].
This can be equivalent to the ensemble directional radiometric temperature only for isothermal and
homogeneous surfaces [8,9]. Practically, LST is derived by in situ or remote sensing instruments,
using the thermal radiance coming from the surface in a finite wavelength band within the FOV in
the direction of the sensor. The uncertainties in the comparison of LST measurements by various IR
sensors can occur due to the difference in the accuracy and precision of the in situ sensors, differences
in measurement techniques for target BTs, differences in FOV, wavelength bands, and spectral response
functions of the sensors. The accuracy of the LSTs by IRT sensors given by the manufacturers are
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<±0.5 ◦C, which agrees with the results presented here, whereas for longwave radiation measurements
it is up to ±10% of daily totals. However, field studies on intercomparison of longwave radiations
measurements using multiple radiometers including CNR1 net radiometer during the energy Balance
Experiment (EBEX-2000) showed that the accuracy of incoming and outgoing longwave radiations
vary up to 10 Wm−2 during daytime and 5 Wm−2 during night time. Similar comparison during
HiWATER experiment using Eppley Precision IR radiometer as reference revealed larger difference
in longwave radiation during daytime especially around noon time (8 Wm−2) and 3 Wm−2 during
nighttime equivalent to an error of 1.2K in the LST at daytime and 0.5 K in the LST at nighttime,
respectively [65,66]. Similar comparison of outgoing longwave radiation at Fort Peck revealed
higher bias during daytime (3.6 Wm−2) than nighttime periods (0.50 Wm−2) demonstrating the better
agreement of LSTs during nighttime periods.

The footprint of the ground-based sensors used in this study can vary up to 1 to 2 orders due to
the sensor’s FOV, angle, and height of the measurement. The effects of FOV on measured LST’s can
be more pronounced in the comparison of directional IRTs and hemispherical pyrgeometers. If the
sensors are mounted anywhere between 1 to 10 m height, the footprint of narrow angle radiometers
like Apogee and JPLR with half-angle FOV ~20◦ can result in circles with a diameter ranging from ~1
to 7.5 m while the hemispherical measurements by pyrgeometers with FOV ~150◦ can cover a circular
area with a diameter of ~7 to 75 m. To view similar area of the target like the other IRTs, the narrow
angle IR radiometers like Heitronics should be mounted above the ground by ~15 to ~150 m making
it more suitable to be used from an aerial platform. There was better agreement between JPLR and
Apogee BTs (< ±0.003 ◦C) than those with Heitronics BTs (<0.26 ◦C) because of the similar wavelength
range, FOV, and footprint area. The experimental area was spatially homogeneous and was large
enough that it exceeded the target area viewed by the IRTs. However, the measurements by thermal
imager showed that there were apparent variations in LST over the surface most likely due to the
changes in emissivity distribution due to the small-scale difference in the surface characteristics [49].
As the measurement by different IRTs depends on the spatial frequency of the temperature variations
on the area of the target in their FOV, ideally all participating radiometers should observe the same area
of the target [32]. As the Heitronics sensor footprints (<0.1 m in diameter at 1.7 m instrument height)
were one order smaller than those by JPLR and Apogee (>1 m in diameter), the areas monitored by
these radiometers will be of comparable size if the Heitronics sensor was mounted at ~25 m at nadir
above the ground. As these can lead to the presence of installation components in the FOV of this
sensor and the pyrgeometer, all the sensors were mounted at the same height adjacent to each other
with the footprint overlapping each other, so that they can cover different areas of the same target,
homogeneous and isothermal as possible, in their FOV.

Usually the IRTs or pyrgeometers are mounted vertically, pointing downward on a long boom
that is usually a few meters in length. This helps to prevent contamination of the footprint of the
sensor by the tower installation parts, especially IRTs if mounted at lower heights (<2 m), like in the
USCRN network and the grassland sites used here. However, this issue cannot be avoided if the
directional narrow bands IRTs are many meters above the canopy or in the case of hemispherical
pyrgeometers if the mounting height is above a few meters, which is typical for of many FLUXNET
sites that use four-way radiometers. One way to prevent this is to install IR radiometers at a near-nadir
view angle (<30◦) in field experiments [32,33], but not in the case of four-way radiometers. Based
on simulations, [67] found that for a sensor with a narrow FOV in the nadir of the urban surface,
directional radiometric temperature differs from actual LST by <±1.9 K, whereas it was <±2.9 K for
off-nadir view directions with highest values during daytime. Over a semiarid grassland, [68] reported
that the difference between nadir and off nadir radiative temperature varied up to 5 K, especially when
biomass reached its maximum suggesting the directional effects on LSTs. In this study, LSTs using
pyrgeometers measurements were lower than those using IRTs with a few exceptions, as a wider
angle might lead to lower surface temperatures for the same land cover even though the effect is
small [69]. The effects of FOV on LST measurements will be small if the target is homogeneous with
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negligible anisotropy [53]. However, FLIR images over a visually homogeneous asphalt surfaces
suggest standard deviations of LST for the study period <0.75 ◦C, but the difference between maximum
and minimum values of LSTs varied from 0.5 to 4 ◦C. This agrees with the report by [32] on the
apparent surface temperature variations on homogeneous looking samples of shortgrass (up to 5
◦C), clover (10 ◦C), gravel (10 ◦C), dark soil (10 ◦C), sand (5 ◦C), and asphalt (3 ◦C) based on thermal
images. The temperature variations of the surface can occur due to the spatial variations in surface
characteristics including surface roughness, emissivity, thermal conductivity, reflectivity, structure, and
small-scale topography. Over the grassland sites the spatial variations in LST within the footprint of the
sensors are inevitable due to the presence of soil, changes in vegetation, soil moisture, and its seasonal
evolution resulting in heterogeneities and anisotropy within the FOV of sensors. Our study revealed a
larger difference between seasonal and annual values of LST (IRT) and LST (LWR) at Audubon (<2 ◦C),
a semiarid grassland with growing season vegetation cover was ~40% in [58]. Similar differences
(~2 ◦C) in LST (IRT) and LST (LWR) were observed by [60] over a vineyard with exposed soil than
over a homogeneous grassland site (0.3 ◦C) during daytime conditions. During the warmer growing
season, there can be maximum contrast between the dry soil and active transpiring vegetation leading
to larger difference in monthly LST estimates in most of the grasslands and it was more pronounced
in Audubon, Brookings, and Fort Peck, even though its magnitude can be affected by the seasonal
distribution of precipitation and soil water content. For the Fort Peck and Canaan valley grasslands,
both RMSE and bias for LST (IRT) and LST (LWR) were mostly <±1 ◦C. However, the distribution
of half hourly LST (IRT)-LST (LWR), showed that the difference in these measurements can exceed
5 ◦C, especially at Brookings and Canaan Valley sites, suggesting heterogeneities and anisotropies in
the FOV of both sensors. With the increase in duration or spatial coverage of the data the positive
and negative biases resulting from short-term changes in environmental conditions or small-scale
heterogeneous within FOV, possibly could offset leading to smaller mean bias in the comparison of
LSTs. Ideally, the uncertainties in ground-based LST measurements should be <±1 ◦C for validation
of satellite data and for assessing the performance of numerical models [70]. For the above uses,
it is preferable to carry out LST measurements over homogeneous surfaces and by ensuring large
footprints, which can made possible by using pyrgeometers because of its stable performance and
larger footprints or by raising the IRT to higher levels without contaminating the footprint with tower
installation parts. Our results show that large uncertainties (>1 to 2 ◦C) in situ LST measurements of the
same order reported for satellite-based LST measurements can occur in daytime conditions resulting
from the surface heterogeneities depending upon the site, its characteristics and changes in vegetation
phenology, if any. However, during nighttime, LST measurements by all sensors agreed better over all
sites due to thermally homogeneous conditions during night. This suggests that the validation results
or comparison of LST between different platforms can vary based on the measurement methodology
used for in situ measurements, difference in accuracy of the sensor, FOV, surface characteristics of the
target, time of the day, sky conditions, and seasonal vegetation characteristics, if any, depending on
the site.

Over the asphalt surface in the parking lot, LST was higher than AT during the observational
period (>12 ◦C during daytime and <2 ◦C during nighttime) with mid-day values exceeding 25 ◦C
during clear air conditions agreeing with the results of [71] over various urban land covers including
asphalt surface. The values of Ts-Ta were generally larger for the non-precipitating days than for the
precipitating days. At grassland sites nighttime Ta was mostly greater than LST. This was expected,
and is consistent with the reports over vegetated surfaces [51,72,73]. Whereas during the daytime,
the LST was higher than Ta and it varied from 0.86 to ~4.98 ◦C with highest values at Audubon for
the entire dataset. This difference is within the range of values reported by [27] and [74] over many
USCRN sites. Nighttime AT was a more reliable proxy for LST than daytime LST [12]. The comparison
of annual and monthly LST and AT over grassland sites indicate that the difference in these two
temperatures depend on the site, time of the day, sky conditions, soil moisture, vegetation growth, and
the season [11]. This result agrees with the earlier studies on the comparison of satellite LST with AT



Sensors 2020, 20, 5268 21 of 26

from spatially and temporally collocated sites [24–26,44]. Understanding the relationship between LST
and AT over different ecosystems is also required for deriving satellite-based AT from LST [12–14].
Both LST and AT, from in situ and remote sensing platforms are needed to evaluate the accuracy of
the simulation of near-surface atmospheric diurnal variation, one of the difficult and most important
task of numerical weather prediction and in the improvement of model performance [11,16,17,75].
The utilization of in situ LST data for satellite LST validation is already demonstrated by many
researchers [7,23,41,44,53,57,59,70]; however, a previous study reported that irrespective of the use of
daytime or nighttime data, the use of AT instead of LST in the comparison of ground and satellite LST
can result in an increased bias and RMSE [44].

The thermal images by FLIR camera, even though only covering a few days during the campaign
period, clearly shows the capability of the IR imager to capture the spatial and diurnal variation of LST
in very good agreement with other in situ sensors. This information captured over a large area using the
imagers onboard UAV or aircraft, is very useful in the study of land-atmospheric interaction, hydrology,
and agriculture at spatial scales larger than ground measurements but at scales that are unable to be
replicated by satellite platforms [76]. However, most of the IR imagers have low manufacturers stated
accuracy (>±2.0 ◦C) compared to IRTs (<±0.5 ◦C) and are suited mainly for short-term experiments or
for aerial flight campaigns. The calibrated uncooled microbolometer thermal infrared cameras, like the
one used here, have been reported to perform well in stable laboratory conditions with accuracy
<±0.5 ◦C, but under changing ambient field conditions the accuracy can decline to >±5.0 ◦C [36,77].
The linear regression analysis between BTs measured by IRTs and FLIR over the parking lot revealed
an offset of ~3.9 ◦C. This systematic bias did not change even after removing the pixels that contain
the embedded cables for TCs. It was within the order of the difference in temperature reported using
thermal imager and IR sensors in the field studies, for example 6.06 ◦C by [38] over a glacier and
between 1.5 and 5 ◦C by [76]; over various crops surface under different stages of cultivation. Surface
heterogeneity or difference in FOV can contribute partially to the bias in temperatures, but correcting
the significant systematic bias for each pixel is important in many applications that use airborne
measurements of LST. For example, even a few degrees bias in LST can lead to significant error in
the estimated energy fluxes using high resolution of the thermal images using aerial platforms like
UAVs [78–80]. One way is to use high accuracy low cost IRTs along with IR cameras onboard to
calibrate the BT measurements [81] as demonstrated here. After the offset correction, the estimated
LST’s agree very well with the LSTs by other IR sensors. Due to its narrow FOV, the Heitronics or
similar sensors are often used in airborne measurements [44,75], and similar IRTs can be used to
calibrate the BTs by IR imagers in use. Additional errors in LSTs by thermal images onboard UAV
or manned aircraft can occur if the atmospheric correction is not taken to account especially above
150 m [82–84], but in this study its effect is negligible due to low mounting height of the imager. There
are additional sources of errors in deriving LST from TIR cameras such as vignetting, non-uniformity
noise, radiometric calibration, and sensor temperature. Of these, the poor performance mostly results
from the non-linear relationship between camera output and sensor temperature and it can be up to
±20 ◦C [36,77]. Further work is needed to improve the overall accuracy, resolution, and performance
of thermal IR cameras for applications that need accuracy and precision of LST similar to IRT sensors.
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